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Abstract 
The flow of a Jeffrey fluid between a thin deformable porous layers is investigated.   The governing 

equations are solved in the free flow and porous flow regions. The expressions for the velocity field and deformation 

are obtained.  When 1 0,λ →  the results agree with the corresponds ones of Barry et al (1991).  The effects of 

Jeffrey parameter, the pressure gradient,  
fφ  and 

sφ  on the flow velocity and deformation are discussed. It is found 

that the velocity increases with the increase in the non-Newtonian Jeffrey parameter 1.λ This study is also relevant 

to filtration technology, soil mechanics and to other biological problems such as the mechanics of articular cartilage.   
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Introduction 
 Viscous flow through and past porous media has 
important applications in engineering and medicine.  
Most of the research works available deal with flow 
through rigid porous media.  But when a biofluid flows 
in a physiological system, there will be an interaction 
between free flow and tissue (deformable) regions.  Thus 
the study on free flow in a deformable porous layer is 
necessitated.  Further most of biological fluids are 
observed to be non-Newtonian and these fluids may be 
modelled with a simple elegant Jeffrey model.   

The study of deformation in porous materials 
with coupled fluid movement was initiated by Terzaghi 
[1] and later continued by Biot [2,3,4] into a successful 
theory of soil consolidation and acoustic propagation.  
Atkin and Craine [5], Bowen [6] and Bedford and 
Drumheller [7] made important works on the theory of 
mixtures.  Mow et al. [8] developed a similar theory for 
the study of biological tissue mechanics. Using this 
theory arterial wall permeability is discussed by 
Jayaraman [9]. The same theory was also applied by 
Mow et al. [10], Holmes and Mow [11] for the study of 
articular cartilages.  Much of this analysis, has been on 
one dimensional or purely radial compression without 
consideration of the influence of shear stresses on the 
deformable porous media.  

The movement of bio-fluids in a physiological 
system has to be investigated thoroughly in order to 
solve diagnostic problems that arise in a living body. 
Some of the bio-fluids like blood are observed to behave 
like non-Newtonian fluids. Since there is no universal 
model to describe all non-Newtonian fluids in 

physiological systems, several models are proposed to 
explain the behavior of these bio-fluids.  

Hayat and Ali [12] investigated the peristaltic 
motion of a Jeffrey fluid under the effect of a magnetic 
field. Elshehaway [13] has studied peristaltic transport in 
an asymmetric channel through a porous medium. 
Influence of partial slip on the peristaltic flow in a porous 
medium and a mathematical model of peristalsis in tubes 
through a porous medium is investigated by Hayat et al. 
[14]. Vajravelu et al. [15] investigated the peristaltic flow 
and heat transfer in a vertical porous annulus with long 
wavelength approximation. Kothandapani and Srinivas 
[16] made a study on the peristaltic transport of a Jeffrey 
fluid under the effect of magnetic field in an asymmetric 
channel. Hayat and Ali [17] investigated the peristaltic 
motion of a Jeffrey fluid under the effect of a magnetic 
field. 
 Among several non-Newtonian models 
proposed for physiological fluids, Jeffrey model is 
significant because Newtonian fluid model can be 

deduced from this as a special case by taking 1λ  = 0. 

Further it is speculated that the physiological fluids such 
as blood exhibit Newtonian and non-Newtonian 
behaviors during circulation in a living body.                 
Vajravelu et al [18] studied the influence of heat transfer 
on peristaltic transport of a Jeffrey fluid in a vertical 
porous stratum. Krishna Kumari et al [19] studied the 
effect of magnetic field on the peristaltic pumping of a 
Jeffrey fluid in an inclined channel. 
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Motivated by these studies, the steady flow of a 
Jeffrey fluid between deformable porous layer
investigated. The fluid velocity in the free and porous 
regions is obtained.  The expression for the 
in the porous layer is also obtained. The effects 

various physical parameters 
fφ , G, 1λ , η

velocity and displacement are discussed through graphs.
    

Formulation of the Problem 
The geometry consists of a steady, 

developed Jeffrey fluid flow through a symmetrical 
channel with solid walls at  y h= ±   and a porous layer 

of thickness L attached to both walls as show
By symmetry only half of the channel 

considered.  The flow region between the plates is 
divided into two layers.  The flow region between the 

lower plate  0y = and the interface 

termed as free flow region whereas the flow region 
between the interface y h L= − and the upper plate  

y h= is designated as deformable porous region

fluid velocities in the free flow and deformable 

v. The displacement in the deformable porous region
The fluid velocity in the free flow region and porous 
flow region are assumed to be (q, 0, 0) and (v,0,0) 
respectively. The displacement due to the deformation of 
the solid matix is taken as (u,0,0). A pressure gradient 

p
G

x

∂ =
∂

is applied, producing an axially direct

Due to the assumption of an infinite channel
x dependence in any of the terms except the pressure.

Fig. 1 Physical Model. 
With the assumptions mentioned above, the 

equations of motion in the free flow and deformable 
porous regions are (following  Barry [20]) 
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steady flow of a 
deformable porous layers is 

the free and porous 
expression for the displacement 

in the porous layer is also obtained. The effects  of 

η  and d, on the 

are discussed through graphs. 

a steady, fully 
flow through a symmetrical 

and a porous layer 

of thickness L attached to both walls as shown in Fig.1. 
By symmetry only half of the channel [0, h]y∈  is 

between the plates is 
divided into two layers.  The flow region between the 

y h L= −  is 

as the flow region 
and the upper plate  

deformable porous region. The 

and deformable are q and 

in the deformable porous region. 
The fluid velocity in the free flow region and porous 
flow region are assumed to be (q, 0, 0) and (v,0,0) 
respectively. The displacement due to the deformation of 

A pressure gradient 

applied, producing an axially directed flow.  

of an infinite channel, there is  no 
x dependence in any of the terms except the pressure. 
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where aµ  is the apparent viscosity of the fluid 

in the porous material,1λ  is Jeffrey parameter,

pressure gradient and 
fφ is the viscous parameter .

note that dot denotes differentiation with 
 
Non-Dimensionalization of the
 It is convenient to introduce the following non
dimensional quantities. 

2 2 2
0 0 0

1 1 1 1 1 1ˆ ˆ ˆ ˆ, , , , ,
f f f

h G h G h G
y hy u u v v q q

µ µ µ
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 where 0G is a typical pressure gradient

of the above dimensionless quantities, the equations (1) 
(3) take the following form.  The hats  

here after. 
2
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The parameter  δ  is a measure of the viscous 
drag of the outside fluid relative to drag in the porous 
medium.  The parameter η is the ratio of the bulk fluid 

viscosity to the apparent fluid viscosity in the porous 
layer. 
The boundary conditions are 

1: 0at y u v= = =                                                                                               

(7a) 

0: 0
dq

at y
dy

= =                                                                                               

(7b) 
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is the apparent viscosity of the fluid 

is Jeffrey parameter, G is the 

viscous parameter . We 

dot denotes differentiation with respect to time. 

the Flow Quantities 
It is convenient to introduce the following non-
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a typical pressure gradient.  In view 

ess quantities, the equations (1) – 
) take the following form.  The hats  ( )∧  are neglected 
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1 : fat y q vε φ= − =                                                                                               

(7c) 

1
f

dq dv
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1

s

du

dyφ
=                                                                                                                        

(7d) 
  
The first two equations represent the no slip 

condition for flow at the solid boundary and the 
symmetry condition along the centre of the channel.  
Equation (7c) equates the fluid velocity at the interface 
with the volume averaged velocity of the porous layer.  
The final two equations arise from the conservation of 
axial momentum across the fluid-porous layer interface 
and the assumption that the proportion of the total stress 
in the porous layer borne by each component is 
proportional to its volume fraction 
 
Solution of the Problem 
 Equations (4) to (6) are coupled differential 
equations that can be solved by using the boundary 
conditions (7). The displacement and velocities in free 
flow region and porous regions are obtained as   
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Results and Discussions 

In this paper, the steady flow of a Jeffrey fluid 
between  thin, deformable porous layers is investigated. 

When the Jeffrey parameter1 0λ → , the results (8) to 

(10) reduce to the corresponding displacement and fluid 
velocity of Barry et al. (1991).  The solutions for the 
fluid velocity and displacement are evaluated 

numerically for different values of physical parameters 

such as Jeffrey parameter 1λ  , the pressure gradient G, 

the viscous parameter 
fφ  , the viscous drag parameter 

δ  and the viscosity parameter  η . 

 The variation of velocity profile of free flow 
region q and deformable porous layer v with y is 
calculated, from equations (8) to (10), for different 

values of 
fφ and is shown in Fig.2. for fixed 

1,G = 1 0.5,λ = 2,δ = 0.2ε = and 0.5η = . We 

observe that the velocities q increase with the increase 

in
fφ . 

The variation of velocity profile of free flow 
region q  and deformable porous layer v with y is 
calculated, from equations (8) to (10), for different 
values of pressure gradient G and is shown in Fig. 3,for 

fixed 0.5,fφ = 1 0.5,λ = 2,δ = 0.2ε = and 

0.5η = . Here we observe that the velocities q and v 

increase with the increase in pressure gradient G. 
The variation of velocity profile of free flow 

region q and deformable porous layer v with y is 
calculated, from equations (8) to (10), for different 

values of Jeffrey parameter 1λ and is shown in Fig. 4, for 

fixed 1,G = 0.5,fφ = 2,δ = 0.2ε = and 0.5η = . 

Here we observe that the velocities q and v increase with 

the increase in Jeffrey parameter1λ . 

The variation of velocity profile of free flow 
region q and deformable porous layer v with y is 
calculated, from equations (8) to (10), for different 
values of ratio of bulk fluid viscosity parameter η and is 

shown in Fig. 5, for fixed 

1 0.5,λ = 1,G = 0.5,fφ = 2,δ = 0.2ε = . It is 

found that the velocity q and v increase with the increase 
in the of ratio of bulk fluid viscosity parameter η . 

The variation of displacement u with y is 
calculated, from equations (9) to (11), for different 

values of Jeffrey parameter1λ and is shown in Fig. 6,for 

fixed 1,G = 2,δ = 0.5,fφ = 0.5η = 0.2ε = . Here 

we observe that the displacement increases with the 

increase in Jeffrey parameter1λ . 

The variation of displacement u with y is 
calculated, from equations (8) to (10), for different 
values of pressure gradient G and is shown in Fig. 7, for 

fixed 1 0.5,λ = 2,δ = 0.5,fφ = 0.5η = 0.2ε = . 
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Here we observe that the displacement increases with the 
increase in pressure gradient G. 

The variation of displacement u with y is 
calculated, from equations (8) to (10), for different 
values of viscous drag parameter δ and is shown in Fig. 
8, for fixed 

1 0.5,λ = 1,G = 0.5,fφ = 0.5η = 0.2ε = . Here 

we observe that the displacement increases with the 
increase viscous drag parameter δ . 
The variation of displacement u with y is calculated, 
from equations (8) to (10), for different values of ratio of 
bulk fluid viscosity parameter η and is shown in Fig. 9, 

for fixed 1 0.5,λ = 1,G = 0.5,fφ = 2,δ = 0.2ε = . 

Here we observe that the displacement increases with the 
increase in of ratio of bulk fluid viscosity parameterη . 

 

Fig 2. Velocity profile of free flow region q  (y=0-0.8) and 
deformable porous layer v(y=0.8-1) for different values of 

fφ . 

 

Fig 3. Velocity profile of free flow region q  (y=0-0.8) and 
deformable porous layerv(y=0.8-1) for different values of  

G. 
 

 
Fig 4.  Velocity profile of free flow region q  (y=0-0.8) and 
deformable porous layer v(y=0.8-1) for different values of 

1λ . 
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Fig 5. Velocity profile of free flow region q  (y=0-0.8) and 
deformable porous layer v(y=0.8-1) for different values of 

η . 

 
Fig 6.Displacement  profile in the deformable porous layer 

for different values of 1λ . 

 
Fig 7. Displacement profile in  the deformable porous layer 

for different values of  G. 

 
Fig 8. Displacement  profile in the deformable porous layer 

for different values of δ . 
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Fig 9. Displacement profile  in  the deformable porous layer 

for different values of η . 

 
Acknowledgement 

One of the authors Prof. S.Sreenadh expresses 
thanks to UGC for providing financial support through 
the Major Research Project to undertake this work. 
 
References 

[1]  Terzaghi, K., Erdbaumechanik auf 
BodenphysikalischenGrundlagen.  Deuticke 
(1925). 

[2]  Biot, M.A., General theory of three-dimensional 
consolidation. J. Appl. Phys., 12 (1941),155-
164. 

[3]  Biot, M.A., Theory of elasticity and 
consolidation for porous anisotropic solid.  J.  
Appl.       Phys., 26(1955), 82-185. 

[4]  Biot, M.A., Mechanics of deformation and 
acoustic propagation in porous media.  J.  Appl.   
Phys., 27 (1956). 

[5]  Atkin, R.J.  and Craine, R.E.,Continuum 
theories of mixtures:  Basic theory and 
historical     development.  Quart.  J.    Appl.  
Math., 29 (1976), 209-244. 

[6]  Bowen, R.M., Incompressible porous media 
models by the theory of mixtures. Int. J. Engng.  
Sci., 18(1980), 1129-1148. 

[7]  Bedford, A. and Drumheller, D. S., Recent 
advances, theory of immiscible and structured   
mixtures.  Int. J. Engng. Sci., 21 (1983), 863-
960.  

[8]  Mow, M.H.  Holmes and Lai, M., fluid transport 
and mechanical properties of articular  

cartilage: a review.  J. Biomechanics, 17 (1984) 
377-394  

[9]  Jayaraman, G., Water transport in the arterial 
wall-  A theoretical study.  J.  Biomechanics,  16 
(1983), 833- 840 

[10]  Mow,V.C., Kwan, M.K.,Lai,W.M. and 
Holmes,M.H., A finite deformation theory for  
non linearly permeable soft hydrated biological 
tissues.  Frontiers in Biomechanics,      
G.Schmid-Schoenbein, S. L.Y. Woo and B. w. 
zweifach (eds), Springer-Verlag, New York,  
(1985) 153-179. 

[11]  Holmes,M.H. and Mow,V.C.,  The nonlinear 
characteristics of soft gels and hydrated     
connective  tissues in ultrafiltration.  J. 
Biomechanics, 23, (1990), 1145-1156. 

[12]  Hayat, T and Ali, N., Physica A Statistical 
Mechanics and its Applications, 370 (2006), 
225-  239. 

[13]  Elshehaway, E.F., Eldabe, N.T., Elghazy, E.M. 
and  Ebaid, A., Peristaltic transport in an  
asymmetric channel through a porous medium", 
Appl. Math. Comput., 182, (2006), 140–150. 

[14]  Hayat,T., Khan, S.B. and  Khan , M., The 
influence of Hall current on the rotating  
Oscillating flows of an Oldroyd-B fluid in a 
porous medium. Nonlinear Dyn.,47, (2007), 
353- 362 

[15]  Vajravelu K, Radhakrishnamacharya, G and 
Radhakrishnamurty V.,  Peristaltic flow and  
heat transfer in a vertical porous annulus, with 
long wavelength approximation. Int J Non- 
linearMech, 42 (2007),754–9. 

[16]  Kothandapani, M.  andSrinivas ,S.,  On the 
influence of wall properties in the MHD 
peristaltic transport with heat transfer and 
porous medium, Phys A. 372 (2008) 4586-4591. 

[17]  Hayat T, Ali N. Peristaltic motion of a Jeffrey 
fluid under the effect of a magnetic    field in a 
tube. Commun Non-linear Sci Numer Simul, 13 
(2008), 1343–52. 

[18]  K. Vajravelu,  S. Sreenadh and P. 
Lakshminarayana. The influence of heat 
transfer on  peristaltic transport of a Jeffrey 
fluid in a vertical porous stratum. 
CommunNonlinear Sci NumerSimulat,16 (2011) 
3107–3125 

[19]  Krishna Kumari,S.V.H.N., Ramana 
Murthy,M.V., Ravi Kumar, Y.V.K. 
andSreenadh,S.,  Peristaltic pumping of a 
Jeffrey fluid under the effect of a magnetic field 
in an inclined  channel,  Appl.Math. Sciences, 
5(2011),447 – 458. 

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Y

u

 

 

η = 0.5

η = 0.7

η = 0.9



[Sreenadh, 3(2): February, 2014]   ISSN: 2277-9655 
   Impact Factor: 1.852
   

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[671-677] 

 

[20]  Barry, S.I., Parker, K.H. and Aldis, G.K. Fluid 
flow over a thin deformable porous layer. 
Journal of Applied Mathematics and Physics 
(ZAMP), 42, (1991), 633-648. 


